Introduction

Circle is a frequently used component in pictures and graphs. The procedure for generating either full circles or circular arcs is included in most graphics packages.

Polar co-ordinates for a circle

- We could use polar coordinates r and θ,

$$
x=x_{c}+r \cos \theta \quad y=y_{c}+r \sin \theta
$$

- A fixed angular step size can be used to plot equally spaced points along the circumference
- A step size of $1 / r$ can be used to set pixel positions to approximately 1 unit apart for a continuous boundary
- But, note that circle sections in adjacent octants within one quadrant are symmetric with respect to the 45 deg line dividing the to octants
- Thus we can generate all pixel positions around a circle by calculating just the points within the sector from $x=0$ to $x=y$
- This method is still computationally expensive

Figure 3-18
Symmetry of a circle. Calculation of a circle point (x, y) in one octant yields the circle points shown for the other seven octants.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Figure 3-15
A circular arc approximated with (a) three straight-line segments, (b) six line segments, and (c) twelve line segments.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Bresenham to Midpoint

- Bresenham requires explicit equation
- Not always convenient (many equations are implicit)
- Based on implicit equations: Midpoint Algorithm (circle, ellipse, etc.)
- Implicit equations have the form $\mathrm{F}(\mathrm{x}, \mathrm{y})=0$.

Midpoint Circle Algorithm

- We will first calculate pixel positions for a circle centered around the origin $(0,0)$. Then, each calculated position (x, y) is moved to its proper screen position by adding xc to x and yc to y
- Note that along the circle section from $x=0$ to $x=y$ in the first octant, the slope of the curve varies from 0 to -1
- Circle function around the origin is given by

$$
\text { fcircle }(x, y)=x^{2}+y^{2}-r^{2}
$$

- Any point (x, y) on the boundary of the circle satisfies the equation and circle function is zero

Figure 3-19
Midpoint between candidate pixels at sampling position $x_{k}+1$ along a circular path.

Computer Graphics with Open GL, Third Edition, by Donald Hearn and M.Pauline Baker. ISBN 0-13-0-15390-7 © 2004 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved.

Midpoint Circle Algorithm

- For a point in the interior of the circle, the circle function is negative and for a point outside the circle, the function is positive
- Thus,
- $f_{\text {circle }}(x, y)<0$ if (x, y) is inside the circle boundary
- $f_{\text {circle }}(x, y)=0$ if (x, y) is on the circle boundary
- $f_{\text {circle }}(x, y)>0$ if (x, y) is outside the circle boundary

Midpoint Circle Algorithm

- Assuming we have just plotted the pixel at $\left(x_{k}, y_{k}\right)$, we next need to determine whether the pixel at position ($x_{k}+1, y_{k}-1$) is closer to the circle
- Our decision parameter is the circle function evaluated at the midpoint between these two pixels

$$
p_{k}=f_{\text {circle }}\left(x_{k}+1, y_{k}-1 / 2\right)=\left(x_{k}+1\right)^{2}+\left(y_{k}-1 / 2\right)^{2}-r^{2}
$$

If $p_{k}<0$, this midpoint is inside the circle and the pixel on the scan line y_{k} is closer to the circle boundary. Otherwise, the mid position is outside or on the circle boundary, and we select the pixel on the scan line $y_{k}-1$

Midpoint Circle Algorithm

- Successive decision parameters are obtained using incremental calculations

$$
\begin{aligned}
P_{k+1}= & f_{\text {circle }}\left(x_{k+1}+1, y_{k+1}-1 / 2\right) \\
& =\left[\left(x_{k+1}\right)+1\right]^{2}+\left(y_{k+1}-1 / 2\right)^{2}-r^{2}
\end{aligned}
$$

OR

$$
P_{k+1}=P_{k}+2\left(x_{k}+1\right)+\left(y_{k+1}^{2}-y_{k}^{2}\right)-\left(y_{k}+1-y_{k}\right)+1
$$

Where y_{k+1} is either y_{k} or y_{k-1}, depending on the sign of p_{k}

- Increments for obtaining P_{k+1} :
$2 x_{k+1}+1$ if p_{k} is negative
$2 x_{k+1}+1-2 y_{k+1}$ otherwise

Midpoint circle algorithm

- Note that following can also be done incrementally:

$$
\begin{aligned}
& 2 x_{k+1}=2 x_{k}+2 \\
& 2 y_{k+1}=2 y_{k}-2
\end{aligned}
$$

- At the start position ($0, r$) , these two terms have the values 2 and $2 r-2$ respectively
- Initial decision parameter is obtained by evaluating the circle function at the start position $(x 0, y 0)=(0, r)$

$$
p_{0}=f_{\text {circle }}(1, r-1 / 2)=1+(r-1 / 2)^{2}-r^{2}
$$

OR

$$
P_{0}=5 / 4-r
$$

- If radius r is specified as an integer, we can round p_{0} to

$$
p_{0}=1-r
$$

The actual algorithm

1: Input radius r and circle center (x_{c}, y_{c}) and obtain the first point on the circumference of the circle centered on the origin as

$$
\left(x_{0}, y_{0}\right)=(0, r)
$$

2: Calculate the initial value of the decision parameter as

$$
P_{0}=5 / 4-r
$$

3: At each x_{k} position starting at $\mathrm{k}=0$, perform the following test:

If $p_{k}<0$, the next point along the circle centered on $(0,0)$ is ($\mathrm{x}_{\mathrm{k}+1}, \mathrm{y}_{\mathrm{k}}$) and

$$
p_{k+1}=p_{k}+2 x_{k+1}+1
$$

The algorithm

Otherwise the next point along the circle is $\left(x_{k+1}, y_{k-1}\right)$ and

$$
p_{k+1}=p_{k}+2 x_{k+1}+1-2 y_{k+1}
$$

Where $2 x_{k+1}=2 x_{k+2}$ and $2 y_{k+1}=2 y_{k}-2$
4: Determine symmetry points in the other seven octants
5: Move each calculated pixel position (x, y) onto the circular path centered on (x, yc) and plot the coordinate values

$$
x=x+x_{c}, y=y+y_{c}
$$

6: Repeat steps 3 through 5 until $x>=y$

Application

- It is used to draw circle efficiently without any error.

