
Introduction

Circle is a frequently used component in pictures
and graphs. The procedure for generating either
full circles or circular arcs is included in most
graphics packages.

Polar co-ordinates for a circle
 We could use polar coordinates r and θ,

x = xc + r cosθ y = yc + r sinθ
 A fixed angular step size can be used to plot equally spaced

points along the circumference
 A step size of 1/r can be used to set pixel positions to

approximately 1 unit apart for a continuous boundary
 But, note that circle sections in adjacent octants within one

quadrant are symmetric with respect to the 45 deg line dividing
the to octants

 Thus we can generate all pixel positions around a circle by
calculating just the points within the sector from x=0 to x=y

 This method is still computationally expensive

Bresenham to Midpoint

 Bresenham requires explicit equation
 Not always convenient (many equations

are implicit)
 Based on implicit equations: Midpoint

Algorithm (circle, ellipse, etc.)
 Implicit equations have the form F(x,y)=0.

Midpoint Circle Algorithm
 We will first calculate pixel positions for a circle centered around

the origin (0,0). Then, each calculated position (x,y) is moved to
its proper screen position by adding xc to x and yc to y

 Note that along the circle section from x=0 to x=y in the first
octant, the slope of the curve varies from 0 to -1

 Circle function around the origin is given by
fcircle(x,y) = x2 + y2 – r2

 Any point (x,y) on the boundary of the circle satisfies the
equation and circle function is zero

Midpoint Circle Algorithm
 For a point in the interior of the circle, the circle function is negative

and for a point outside the circle, the function is positive
 Thus,

 fcircle(x,y) < 0 if (x,y) is inside the circle boundary
 fcircle(x,y) = 0 if (x,y) is on the circle boundary
 fcircle(x,y) > 0 if (x,y) is outside the circle boundary

yk

Yk-1

xk xk+1 Xk+3Midpoint

X2+y2-r2=0

Midpoint between candidate
pixels at sampling position
xk+1 along a circular path

Midpoint Circle Algorithm
 Assuming we have just plotted the pixel at (xk,yk) , we next

need to determine whether the pixel at position (xk + 1, yk-1) is
closer to the circle

 Our decision parameter is the circle function evaluated at the
midpoint between these two pixels

pk = fcircle (xk +1, yk-1/2) = (xk +1)2 + (yk -1/2)2 – r2

If pk < 0 , this midpoint is inside the circle and the pixel on the
scan line yk is closer to the circle boundary. Otherwise, the
mid position is outside or on the circle boundary, and we select
the pixel on the scan line yk-1

Midpoint Circle Algorithm
 Successive decision parameters are obtained using incremental

calculations
Pk+1 = fcircle(xk+1+1, yk+1-1/2)

= [(xk+1)+1]2 + (yk+1 -1/2)2 –r2

OR
Pk+1 = Pk+2(xK+1) + (yK+1

2 – yk
2) – (yk+1- yk)+1

Where yk+1 is either yk or yk-1, depending on the sign of pk

 Increments for obtaining Pk+1:
2xk+1+1 if pk is negative
2xk+1+1-2yk+1 otherwise

Midpoint circle algorithm
 Note that following can also be done incrementally:

2xk+1 = 2xk +2
2 yk+1 = 2yk – 2

 At the start position (0,r) , these two terms have the values 2
and 2r-2 respectively

 Initial decision parameter is obtained by evaluating the circle
function at the start position (x0,y0) = (0,r)

p0 = fcircle(1, r-1/2) = 1+ (r-1/2)2-r2

OR
P0 = 5/4 -r

 If radius r is specified as an integer, we can round p0 to
p0 = 1-r

The actual algorithm
1: Input radius r and circle center (xc,yc) and obtain the first
point on the circumference of the circle centered on the origin
as

(x0,y0) = (0,r)
2: Calculate the initial value of the decision parameter as

P0 = 5/4 - r
3: At each xk position starting at k = 0 , perform the

following test:

If pk < 0 , the next point along the circle centered on (0,0) is
(xk+1, yk) and

pk+1 = pk + 2xk+1 + 1

The algorithm

Otherwise the next point along the circle is (xk+1, yk-1) and

pk+1 = pk + 2xk+1 +1 -2yk+1

Where 2xk+1 = 2xk+2 and 2yk+1 = 2yk-2

4: Determine symmetry points in the other seven octants

5: Move each calculated pixel position (x,y) onto the
circular path centered on (x,yc) and plot the coordinate
values

x = x+ xc , y= y+ yc

6: Repeat steps 3 through 5 until x >= y

Application

 It is used to draw circle efficiently
without any error.

